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A general plane problem of the impression of a flat punch into a rigid-plastic half-space under the action of transverse and 
longitudinal shear contact stresses is considered. The condition of complete plasticity and the hyperbolic equations of the general 
plane problem of the theory of ideal plasticity [l] are used. The reduction of the limit pressure on the punch is determined as 
a function of the shear contact stresses. 0 2002 Elsevier Science Ltd. All rights reserved. 

1. BASIC EQUATIONS 

We solve the problem of the indentation of a flat punch into a right-plastic half-space under the action 
of longitudinal and transverse shear contact stresses on the punch boundary using the condition of 
complete plasticity which, in the principal stresses, has the form 

61 = 0‘2, o3 = crl + 2k (1.1) 

where k is the shear yield point of the right-plastic material. The condition of complete plasticity ensures 
considerable freedom of the plastic flow, leads to quasilinear hyperbolic differential equations with an 
efficient algorithm for solving boundary-value problems, including discontinuities and singular points, 
and corresponds to the shear mechanism of the plastic flow of solids [2]. 

Below, we shall employ dimensionless stresses, taking 2k = 1 as the unit of stress and the width of 
the punch as the unit of length. We write the mean stress o in the case of condition (1.1) in the form 

0=0,+x (1.2) 

We specify the direction cosines of the stress o3 with coordinate axes x, y, z by means of the angles 0 
and cp 

“I =cos(8/2)coscp, nz =cos(8/2)sincp, n3 =sin(8/2) (1.3) 

The components of the stress tensor in Cartesian coordinates (x, y, z), which satisfy condition (l.l), 
can be expressed in terms of a, 8 and cp [l] 

crT, =o-~+f/2(1+cos~)cos2(p, cr, =o-jl:+K(l+cosB)sin2cp 

6, =o-%+$/,(I-case), z,=)/2(l+cosB)sincpcoscp 

rxz = ZsinBcoscp, 7yz = Jf$sinesincp 

(1.4) 

If the length of the punch in the direction of the z axis is significantly greater than its width in the 
direction of the x axis, it can be assumed that o, 8 and cp are independent of the z coordinate. This is 
the case of the general plane problem of the theory of ideal plasticity for which quasilinear equations 
of the hyperbolic type for the functions 6, 8 and cp have been obtained, with three equations for the 
characteristics and differential relations along them 

VYWp,, =tgww4+p)i, tg2p=(_(e) (1.5) 
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do f L(e) & = 0 along l3 and a 

<(@do + sine sin2cp dcp + de= 0 along y 

(1.6) 

(1.7) 

(1.8) 

Here 

When 8 = 0, we obtain from expressions (1.4) z, = r,,* = + 0 and Eqs (1.5) define the orthogonal 
characteristics of plane strain with Hen&y’s relations (1.6). When 0 < 8 < N2, the characteristics (1.5) 
are non-orthogonal and the y-characteristic (1.7) is the bisectrix of the angle between the a- and /3- 
characteristics (1.5). 

2. BOUNDARY CONDITIONS 

We will assume that the normal stresses on the stress-free boundary of the half-space AC (Fig. 1) satisfy 
the condition of complete plasticity (l.l), that is, a, = o, = cri = o2 = -1, oY = q = 0 and, from relations 
(1.2) and (1.3), we find 

0=-g, 9=x/2, e=O in AC (2.1) 

When 0 = 0, the characteristics (1.5) are linear (dy/dx),,B = + 1 and, in the region ABC, there is a uniform 
stressed state (2.1) for plane strain. 

The characteristics (1.5) are only defined for positive values of case and therefore, on the contact 
boundary of the punch OA, we specify the angle 8 as a parameter of the problem in the range 

0 =S 8 < ~12 in OA (2.2) 

We specify the second parameter, the angle cp, which defines the shear contact stresses according to 
Eqs (1.4), in a range which depends on the angle 8 

cuS(p<xf4+u inOA (2.3) 

0 S c d 1, u =xarctgc_(8) (2.4) 

The upper limit in inequality (2.3) is determined by the degeneration of the field of the characteristics 
into a line tangential to the punch boundary, and the lower limit monitors the degeneration of the field 
of the characteristics at large angles 8, when the angle between the directions of the a- and p- 
characteristics approaches 7~. 

At the singular point A, we find the change in the mean stress from the stress-free boundary AC to 
the punch boundary OA by integrating Eq. (1.6) over the degenerate a-characteristic 
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(2.5) 

We use a similar integral over the degenerate P-characteristic to monitor the support capability of a 
rigid wedge with vertex at the point 0. 

3. PLANE STRAIN’ 

In the case of plane strain 8 = 0. The orthogonal characteristics (1.5) in the regionABD form a centred 
fan with straight p-lines, and integral (2.5) determines the values of cr in the region of the uniform stressed 
state OAD 

o=-g-(7t/2-(p) (3.1) 

We find the pressure on the punch and the shear contact stresses from expressions (1.4) 

PY =-6, =1+x/2-(q+sin2cp), P, =Tyz =O, P, =Txy =f/,sin2g (3.2) 

For the length L of the characteristic AB and the coordinate x, of the point C, which define the 
dimensions and shape of the field of the characteristics, we have 

L=sin(x/4-cp), x, =l+fisin(n/4-cp) 

where cp varies over the range (2.3) when u = 0. 
When cp = 0, we obtain a smooth Prandtl’s punch, and the limit pressure has the form 

P, = I + X/2, P, = P, = 0; x, = 2 

(3.3) 

(3.4) 

In this case, a wedge with vertex at the point 0 is loaded up to the plastic state and the field of the 
characteristics is symmetrical about the middle of the punch. 

When cp = 7r/4, we obtain from relations (3.2) and (3.3) 

Py=f/(1+X/2), P*=)/2, P*=O, L=O, xc=1 (3.5) 

The field of the characteristics degenerates into a shear line, which coincides with the punch boundary, 
the shear contact stress in the direction of the x axis is equal to the shear yield point and the pressure 
on the punch is half the pressure on Prandtl’s punch. 

4. GENERAL PLANE STRAIN 

When 8 > 0, we obtain the field of the characteristics and the stress field by numerical integration of 
Eqs (1.5)-(1.8) with boundary conditions (2.1)-(2.5). 

At the regular mesh points of the characteristics, which do not belong to the singular point A and 
the boundary of the punch OA, we solve the Cauchy problem for the functions cr, cp and 8 which are 
known at points I and 2 of the Cauchy contour (Fig. 2) by approximating the differentials in Eqs 
(1.5)-(1.8) by finite differences and the functions cp and 8 by their mean values along the characteristics. 
The coordinatesx,~ of point P must satisfy the three differential equations of the characteristics which, 
in the finite-difference approximation, have the form 

0, - y,Y(x - x1) = tg[cp - (~14 + cl>1 on a (4.1) 

0, - y2Nx - x2> = tgfcp + (x/4 + j.01 on I3 (4.2) 

t_Y - YMx - x3) = tgcp on y (4.3) 

We find the unknown coordinates of point 3 at the intersection of the y-characteristic and the Cauchy 
contour, which we approximate by a chord between points I and 2 
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(Y3 -YdKX3 -4 = (Y2 -YNX2 -x1> (4.4) 

For known coordinates of point 3, we find the values of the functions o, cp, 8 at this point by linear 
interpolation between points I and 2, at which these functions are defined. 

The differential relations along the three characteristics take the form 

(4.5) 

~--~2=-L,(e)(cp--WonP (4.6) 

O3 - Cl = c(e) ((3 - aJ) + sin0 sin29 (cp - cps) on y (4.7) 

where ol, 02, o3 are the values of o at the points I, 2 and 3. 
Equations (4.1)-(4.7) contain the unknown coordinatesx,~ of the point P, the unknown functions 

o, cp and 8 at the point P and the unknown coordinates x3, y3. An iterative procedure is used to solve 
this system of equations. 

We specify the initial values of the angles cp = cpl, 8 = Cl1 for the a-characteristic 1 - P, cp = cp2, 
6 = Cl2 for the P-characteristic 2 - P and cp = %((pi + (p2), 8 = i/2(@ + 0,) for the y-characteristic 
3 -P. The calculations are carried out using the following scheme. 

1. We calculate x and y using Eqs (4.1) and (4.2) and o and cp at the point P using Eqs (4.5) and 
(4.6). 

2. Using Eqs (4.3) and (4.4), we calculate the coordinatesx3,y3 of point 3 and, by linear interpolation 
between points I and 2, we find the values of cr3, cp3, 03 at point 3. 

3. Using Eq. (4.7), we calculate 8 at the point P. 
4. We calculate the mean values of cp and 8 between the points 1 - P, 2 - P, 3 - P and return to 

step 1. 
An absolute difference in the successive values of cp and 8 at the point P of the order of 10” is attained 

after two to three iterations. 
We find the field of the characteristics ABD (Fig. 1) from the solution of the Goursat problem for 

known values of the functions o, cp, 8 in the P-CharacteristicAB and at the singular point A, by calculating 
the regular mesh points of the characteristics using Eqs (4.1)-(4.7). Then, in the region OAD, we solve 
the mixed problem with the known values of the functions o, cp, 8 for the P-characteristic AD and 
boundary conditions on AO. We find the x coordinates and the values of o at the mesh points on the 
boundary OA from the linear equations (4.1) and (4.5), since cp and Cl are known for OA. 

The field of the characteristics in the region OABD is determined, apart from the unknown length 
L of the characteristicm, which we find from the condition that the coordinate x0 is equal to zero at 
the point 0. The algorithm for constructing the field of the characteristics defines x0 as a continuous 
function of the parameter L which must satisfy the condition 

x&L) = 0 (4.8) 

We solve Eq. (4.8) using Newton’s iterative method, approximating the derivative with a finite- 
difference ratio and taking the length L for the plane strain (3.3) as the initial approximation 

L ,+, = Li-xo(Li)ALl[x,(Li+AL)-x,(Li)], AL= 1o-3 (4.9) 

wherei = 0, 1,2, . . . is the number of the iteration. I.rations (4.9) lead to a value 1x01 < 10e6 after 
two to three steps. 
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As the modulus of the shear contact stress P, = m approaches the limiting value of i/2, the 
field of the characteristics degenerates into a line, which coincides with the punch boundary. If 
cp = n/2 and 8 -+ n/2, we obtain the longitudinal displacement of the punch along the z axis when P, 
= 0 and P, = l/2. From Eqs (2.5) and (1.4), we find cr = --2/j, o, = -i/2. This is the case of pure shear 
with minimum pressure on the punch 

P,=1/2, P, =O, Pz=j$ when (9=8=x12 (4.10) 

Hence, when the shear contact stresses change, the limit pressure on the punch varies from a maximum 
value of 1 + 7r/2 for a smooth Prandtl’s punch to a minimum value of l/2 in the case of the pure 
longitudinal displacement of an absolutely rough punch. 

The field of the characteristics for 6 = 1, cp = 0.1563 is shown in Fig. 1. On departing from the singular 
pointA, the o- and P-characteristics are almost orthogonal since 0 + 0 in accordance with the boundary 
conditions onAB. As the CX- and l3-characteristics approach the punch boundary, they become noticeably 
non-orthogonal since 8 increases, approaching the value of unity, specified on OA. 

A.n example of the field of the characteristics, when the shear contact stresses corresponding to the 
value 8 = 1.25, cp = 0.588 are increased; is shown in Fig. 3. Calculations show that the normal pressure 
on the punch is practically constant with an exceedingly small rise from the value of 1.781 at point 0 
to 1.806 near the comer point A. 

The mean limit pressures on the punch Py, the shear contact stresses and the coordinatesx, of point 
C of the plastic region are shown in Table 1 for several values of the parameter 8. 

The numerical results presented above were obtained for a flat punch at constant values of the 
shear contact stresses. The method of integrating hyperbolic differential equations for the general 
plane problem of the theory of ideal plasticity which has been developed can be used in the case 
of a non-uniform distribution of the shear contact stresses, a curvilinear boundary of the punch 
and a finite thickness of the workpiece, as applied to technological problems of the theory of plasticity 
[3,41. 

Fig. 3 

Table 1 

8 0.5 I .o I .25 

I 
PY 2.537 I.848 I.405 2.402 I.950 I.410 2.250 I.781 I.395 
PX 0.03 I 0.397 0.467 0.1 I5 0.309 0.385 0.171 0.304 0.328 
PZ 0.008 0.1 16 0.161 0.063 0. I89 0.296 0.128 0.263 0.348 

P n 0.032 0.414 0.495 0.131 0.362 0.486 0.214 0.402 0.478 
X‘ I .977 1.421 I.105 I.891 I .549 I.178 I .802 I.481 I .229 
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